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Background and motivation



BACKGROUND AND MOTIVATION

Non-commutative rings with a skewed or twisted multiplication; Hilbert’s twist [Hil03].

Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of
affine algebraic varieties, group rings, crossed products etc. Used e.g. in coding theory.

Ore extensions were introduced by Ore in [Ore33], and non-associative Ore extensions
in [NÖR18]. What about non-associative skew Laurent polynomial rings?

We generalize results on simplicity and Hilbert’s basis theorem – with some surprises!

[Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.
[Ore33] O. Ore. “Theory of Non-Commutative Polynomials”. In: Ann. Math 34.3 (1933).
[NÖR18] P. Nystedt, J. Öinert, and J. Richter. “Non-associative Ore extensions”. In: Isr. J. Math. 224.1 (2018).
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BACKGROUND AND MOTIVATION

This talk is based on joint work with J. Richter (BTH); [BR23].

Convention. All rings in this talk are unital, but not necessarily commutative.

[BR23] P. Bäck and J. Richter. “Hilbert’s basis theorem and simplicity for non-associative skew Laurent polynomial
rings and related rings”. In: arXiv:2207.07994 (2023).
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Skew Laurent polynomial rings



SKEW LAURENT POLYNOMIAL RINGS

Definition (Skew Laurent polynomial ring)
Let S be an associative ring, R ⊆ S with 1 ∈ R, x ∈ S invertible. S is a skew Laurent
polynomial ring of R if these axioms hold:

(S1) S is a free left R-module with basis {1, x, x−1, x2, x−2, . . .}.
(S2) xR = Rx.
(S3) S is associative.

Let R be an associative ring with an automorphism σ. The generalized Laurent
polynomial ring R[X±;σ] is

{∑
i∈Z riXi : ri ∈ R zero for all but finitely many i ∈ Z

}
.

Addition is pointwise and multiplication defined by(
rXm

) (
sXn

)
=

(
rσm(s)

)
Xm+n, r, s ∈ R, m, n ∈ Z.

The generalized polynomial ring R[X;σ] ⊂ R[X±;σ] subset of sums with i ∈ N.

Proposition
R[X±;σ] is a skew Laurent polynomial ring of R with x = X.

Proposition
Every skew Laurent polynomial ring of R is isomorphic to a generalized Laurent
polynomial ring R[X±;σ].
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SKEW LAURENT POLYNOMIAL RINGS

What are examples of skew Laurent polynomial rings?

Example
Let R be an associative ring. Then R[X±] = R[X±; idR] (and R[X] = R[X; idR]).

Example
Let ∗ : C → C, u 7→ u∗ be complex conjugation. In C[X±; ∗] (and C[X; ∗]), Xu = u∗X.

Example
Let K be a field. The quantum torus Tq(K) is K〈X±, Y±〉/(XY− qYX) for some q ∈ K× .
Tq(K) is (isomorphic to) K[Y±][X±;σ] where σ is the K-automorphism σ(Y) = qY.
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Non-associative skew Laurent
polynomial rings



NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Convention. A non-associative ring is a ring which is not necessarily associative.

Definition (Associator and nuclei)
(·, ·, ·) : R× R× R → R is defined by (r, s, t) := (rs)t− r(st) for r, s, t ∈ R.

(A,B, C) finite sums (a, b, c) with a ∈ A, b ∈ B, c ∈ C for A,B, C ⊆ R.

Nl(R) := {r ∈ R : (r, s, t) = 0 for all s, t ∈ R}. Nm(R) and Nr(R) defined similarly.

Definition (Left R-module)
If R is a non-associative ring, a left R-module is an additive group M with a biadditive
map R× M → M, (r,m) 7→ rm for any r ∈ R and m ∈ M.
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Definition (Non-associative skew Laurent polynomial ring)
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non-associative skew Laurent polynomial ring of R if these axioms hold:

(N1) S is a free left R-module with basis {1, x, x−1, x2, x−2, . . .}.
(N2) xR = Rx.
(N3) (S, S, x) = (S, x, S) = {0}.

Let R be a non-associative ring with an additive bijection σ that respects 1.
The generalized Laurent polynomial ring R[X±;σ] is defined as in the associative case,(
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)
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Proposition ([BR23])
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Proposition ([BR23])
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NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If S := R[X±;σ], then the following hold:

(i) R ⊆ Nl(S) ⇐⇒ R is associative.
(ii) X ∈ Nl(S) ⇐⇒ σ is an automorphism.
(iii) S is associative ⇐⇒ R is associative and σ is an automorphism.

Example ([BR23])
R[X±] = R[X±; idR] is associative ⇐⇒ R is associative.

Example ([BR23])
On C, define σ(a+ bi) = a+ qbi for any a, b ∈ R and q ∈ R× .
Then σ is an automorphism ⇐⇒ q = ±1 ⇐⇒ C[X±;σ] is associative.

Example ([BR23])
The quantum torus Tq(O) for any q ∈ R× is O⊗R Tq(R). Then Tq(O) is (isomorphic
to) O[Y±][X±;σ] where σ is the O-automorphism σ(Y) = qY. Tq(O) is not associative.
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NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

An anti-automorphism σ on R is an additive bijection s.t. σ(rs) = σ(s)σ(r) for r, s ∈ R,
naturally respecting 1.

Lemma ([BR23])
If R is a non-associative ring with an anti-automorphism σ,
then R[X±;σ] is associative ⇐⇒ R is associative and commutative.

An involution is an anti-automorphism ∗ : R → R, r 7→ r∗ s.t. (r∗)∗ = r for any r ∈ R.
R with an involution ∗ is a ∗-ring. Any ∗-ring R gives R[X±; ∗].

Example ([BR23])
Mn(C) with ∗ conjugate transpose is a ∗-ring. Mn(C)[X±; ∗] is associative ⇐⇒ n = 1.

Example ([BR23])
Let A be any of the real ∗-algebras R,C,H, . . . with ∗ conjugation.
Then A is commutative ⇐⇒ A = R or C, so A[X±; ∗] is associative ⇐⇒ A = R or C.
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NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])
Let D be a commutative, non-associative division ring with an additive bijection σ

that respects 1. If σ has infinite order, then D[X±;σ] is simple.

C[X±;σ] with σ(a+ bi) = a+ qbi for a, b ∈ R and q ∈ R× is simple if q 6= ±1.

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If σm = idR for an m ∈ Z\{0}, then R[X±;σ](1+ Xm2 ) is a non-trivial ideal of R[X±;σ].

S := C[X±;σ] above is not simple if q = ±1 since S(1+ X4) is a non-trivial ideal of S.
S is simple ⇐⇒ S is not associative.

If R is a ∗-ring, then R[X±; ∗](1+ X4) is a non-trivial ideal of R[X±; ∗].

10



NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])
Let D be a commutative, non-associative division ring with an additive bijection σ

that respects 1. If σ has infinite order, then D[X±;σ] is simple.

C[X±;σ] with σ(a+ bi) = a+ qbi for a, b ∈ R and q ∈ R× is simple if q 6= ±1.

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If σm = idR for an m ∈ Z\{0}, then R[X±;σ](1+ Xm2 ) is a non-trivial ideal of R[X±;σ].

S := C[X±;σ] above is not simple if q = ±1 since S(1+ X4) is a non-trivial ideal of S.
S is simple ⇐⇒ S is not associative.

If R is a ∗-ring, then R[X±; ∗](1+ X4) is a non-trivial ideal of R[X±; ∗].

10



NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])
Let D be a commutative, non-associative division ring with an additive bijection σ

that respects 1. If σ has infinite order, then D[X±;σ] is simple.

C[X±;σ] with σ(a+ bi) = a+ qbi for a, b ∈ R and q ∈ R× is simple if q 6= ±1.

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If σm = idR for an m ∈ Z\{0}, then R[X±;σ](1+ Xm2 ) is a non-trivial ideal of R[X±;σ].

S := C[X±;σ] above is not simple if q = ±1 since S(1+ X4) is a non-trivial ideal of S.
S is simple ⇐⇒ S is not associative.

If R is a ∗-ring, then R[X±; ∗](1+ X4) is a non-trivial ideal of R[X±; ∗].

10



NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])
Let D be a commutative, non-associative division ring with an additive bijection σ

that respects 1. If σ has infinite order, then D[X±;σ] is simple.

C[X±;σ] with σ(a+ bi) = a+ qbi for a, b ∈ R and q ∈ R× is simple if q 6= ±1.

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If σm = idR for an m ∈ Z\{0}, then R[X±;σ](1+ Xm2 ) is a non-trivial ideal of R[X±;σ].

S := C[X±;σ] above is not simple if q = ±1 since S(1+ X4) is a non-trivial ideal of S.
S is simple ⇐⇒ S is not associative.

If R is a ∗-ring, then R[X±; ∗](1+ X4) is a non-trivial ideal of R[X±; ∗].

10



NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])
Let D be a commutative, non-associative division ring with an additive bijection σ

that respects 1. If σ has infinite order, then D[X±;σ] is simple.

C[X±;σ] with σ(a+ bi) = a+ qbi for a, b ∈ R and q ∈ R× is simple if q 6= ±1.

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If σm = idR for an m ∈ Z\{0}, then R[X±;σ](1+ Xm2 ) is a non-trivial ideal of R[X±;σ].

S := C[X±;σ] above is not simple if q = ±1 since S(1+ X4) is a non-trivial ideal of S.
S is simple ⇐⇒ S is not associative.

If R is a ∗-ring, then R[X±; ∗](1+ X4) is a non-trivial ideal of R[X±; ∗].

10



NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])
Let D be a commutative, non-associative division ring with an additive bijection σ

that respects 1. If σ has infinite order, then D[X±;σ] is simple.

C[X±;σ] with σ(a+ bi) = a+ qbi for a, b ∈ R and q ∈ R× is simple if q 6= ±1.

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If σm = idR for an m ∈ Z\{0}, then R[X±;σ](1+ Xm2 ) is a non-trivial ideal of R[X±;σ].

S := C[X±;σ] above is not simple if q = ±1 since S(1+ X4) is a non-trivial ideal of S.
S is simple ⇐⇒ S is not associative.

If R is a ∗-ring, then R[X±; ∗](1+ X4) is a non-trivial ideal of R[X±; ∗].

10



NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])
Let D be a commutative, non-associative division ring with an additive bijection σ

that respects 1. If σ has infinite order, then D[X±;σ] is simple.

C[X±;σ] with σ(a+ bi) = a+ qbi for a, b ∈ R and q ∈ R× is simple if q 6= ±1.

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If σm = idR for an m ∈ Z\{0}, then R[X±;σ](1+ Xm2 ) is a non-trivial ideal of R[X±;σ].

S := C[X±;σ] above is not simple if q = ±1 since S(1+ X4) is a non-trivial ideal of S.
S is simple ⇐⇒ S is not associative.

If R is a ∗-ring, then R[X±; ∗](1+ X4) is a non-trivial ideal of R[X±; ∗].

10



NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])
Let D be a commutative, non-associative division ring with an additive bijection σ

that respects 1. If σ has infinite order, then D[X±;σ] is simple.

C[X±;σ] with σ(a+ bi) = a+ qbi for a, b ∈ R and q ∈ R× is simple if q 6= ±1.

Proposition ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If σm = idR for an m ∈ Z\{0}, then R[X±;σ](1+ Xm2 ) is a non-trivial ideal of R[X±;σ].

S := C[X±;σ] above is not simple if q = ±1 since S(1+ X4) is a non-trivial ideal of S.
S is simple ⇐⇒ S is not associative.

If R is a ∗-ring, then R[X±; ∗](1+ X4) is a non-trivial ideal of R[X±; ∗].

10



Hilbert’s basis theorem



HILBERT’S BASIS THEOREM

A family F of subsets satisfies the ascending chain condition if there is no infinite
chain S1 ⊂ S2 ⊂ . . . and S1, S2, . . . ∈ F . S ∈ F is maximal if no T ∈ F with S ⊂ T.

Proposition
Let R be a non-associative ring. Then the following are equivalent:

(NR1) R satisfies the ascending chain condition on its right (left) ideals.
(NR2) Any non-empty family of right (left) ideals of R has a maximal element.
(NR3) Any right (left) ideal of R is finitely generated.

R is called right (left) Noetherian if it satisfies these conditions.
R is called Noetherian if both right and left Noetherian.

Theorem (Hilbert’s basis theorem)
Let R be an associative, commutative ring. If R is Noetherian, then so is R[X].

Hilbert’s [Hil90] original theorem was a version of the above.

Theorem (Hilbert’s basis theorem for R[X;σ] and R[X±;σ])
Let R be an associative ring and σ an automorphism on R.
If R is right or left Noetherian, then so are R[X;σ] and R[X±;σ].
[Hil90] D. Hilbert. “Ueber die Theorie der algebraischen Formen”. In: Math. Annalen 42 (1890).
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HILBERT’S BASIS THEOREM

Theorem ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If R is right or left Noetherian, then so is R[X±;σ].

Theorem ([BR23])
Let R be a non-associative ring with an additive bijection σ that respects 1.
If R is right Noetherian, then so is R[X;σ].

Remark. There is a left Noetherian ring R and a σ where R[X;σ] is not left Noetherian!
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HILBERT’S BASIS THEOREM

Let R be a non-associative ring with σ an additive bijection that respects 1.
Can consider skew power series rings R[[X;σ]] as

{∑∞
i=0 riXi : ri ∈ R

}
and skew Laurent

series rings R((X;σ)) as
{∑∞

i=k riXi : ri ∈ R, k ∈ Z
}
with (rXm) (sXn) = (rσm(s)) Xm+n .

Theorem
Let R be an associative ring with an automorphism σ.
If R is right or left Noetherian, then so are R[[X;σ]] and R((X;σ)).

Theorem ([BR23])
Let R be an associative ring with an additive bijection σ that respects 1.
If R is right Noetherian, then so are R[[X;σ]] and R((X;σ)).

Q: Can one generalize the last theorem for R non-associative?

Q: Can one prove a left version of the last theorem?
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