Non-associative skew Laurent polynomial rings

Noncommutative Rings and their Applications VIII, University of Artois, Lens, 2023

Per Bäck, <per.backomdu.se>
August 28, 2023

Mälardalen University,
Sweden

Outline

I. Background and motivation
II. Skew Laurent polynomial rings
III. Non-associative skew Laurent polynomial rings
IV. Hilbert's basis theorem

Background and motivation

BACKGROUND AND MOTIVATION

Non-commutative rings with a skewed or twisted multiplication; Hilbert's twist [Hil03]. Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of affine algebraic varieties, group rings, crossed products etc. Used e.g. in coding theory.
[Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.

BACKGROUND AND MOTIVATION

Non-commutative rings with a skewed or twisted multiplication; Hilbert's twist [Hil03].
Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of affine algebraic varieties, group rings, crossed products etc. Used e.g. in coding theory.

[^0]
BACKGROUND AND MOTIVATION

Non-commutative rings with a skewed or twisted multiplication; Hilbert's twist [Hil03].
Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of affine algebraic varieties, group rings, crossed products etc. Used e.g. in coding theory. Ore extensions were introduced by Ore in [Ore33],

[^1]
BACKGROUND AND MOTIVATION

Non-commutative rings with a skewed or twisted multiplication; Hilbert's twist [Hil03].
Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of affine algebraic varieties, group rings, crossed products etc. Used e.g. in coding theory. Ore extensions were introduced by Ore in [Ore33], and non-associative Ore extensions in [NÖR18].

[^2]
BACKGROUND AND MOTIVATION

Non-commutative rings with a skewed or twisted multiplication; Hilbert's twist [Hil03].
Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of affine algebraic varieties, group rings, crossed products etc. Used e.g. in coding theory. Ore extensions were introduced by Ore in [Ore33], and non-associative Ore extensions in [NÖR18]. What about non-associative skew Laurent polynomial rings?

[^3]
BACKGROUND AND MOTIVATION

Non-commutative rings with a skewed or twisted multiplication; Hilbert's twist [Hil03].
Appear as universal enveloping algebras of Lie algebras, quantized coordinate rings of affine algebraic varieties, group rings, crossed products etc. Used e.g. in coding theory. Ore extensions were introduced by Ore in [Ore33], and non-associative Ore extensions in [NÖR18]. What about non-associative skew Laurent polynomial rings?

We generalize results on simplicity and Hilbert's basis theorem - with some surprises!

[^4]
BACKGROUND AND MOTIVATION

This talk is based on joint work with J. Richter (BTH); [BR23].
Convention. All rings in this talk are unital, but not necessarily commutative.
[BR23] P. Bäck and J. Richter. "Hilbert's basis theorem and simplicity for non-associative skew Laurent polynomial rings and related rings". In: arXiv:2207.07994 (2023).

BACKGROUND AND MOTIVATION

This talk is based on joint work with J. Richter (BTH); [BR23].
Convention. All rings in this talk are unital, but not necessarily commutative.
[BR23] P. Bäck and J. Richter. "Hilbert's basis theorem and simplicity for non-associative skew Laurent polynomial rings and related rings". In: arXiv:2207.07994 (2023).

Skew Laurent polynomial rings

SKEW LAURENT POLYNOMIAL RINGS

SKEW LAURENT POLYNOMIAL RINGS

Definition (Skew Laurent polynomial ring)

Let S be an associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a skew Laurent polynomial ring of R if these axioms hold:

SKEW LAURENT POLYNOMIAL RINGS

Definition (Skew Laurent polynomial ring)

Let S be an associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a skew Laurent polynomial ring of R if these axioms hold:
(S1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(S2) $x R=R x$.
(S3) S is associative.

SKEW LAURENT POLYNOMIAL RINGS

Definition (Skew Laurent polynomial ring)

Let S be an associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a skew Laurent polynomial ring of R if these axioms hold:
(S1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(S2) $x R=R x$.
(S3) S is associative.

Let R be an associative ring with an automorphism σ. The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is $\left\{\sum_{i \in \mathbb{Z}} r_{i} X^{i}: r_{i} \in R\right.$ zero for all but finitely many $\left.i \in \mathbb{Z}\right\}$.

SKEW LAURENT POLYNOMIAL RINGS

Definition (Skew Laurent polynomial ring)

Let S be an associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a skew Laurent polynomial ring of R if these axioms hold:
(S1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(S2) $x R=R x$.
(S3) S is associative.

Let R be an associative ring with an automorphism σ. The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is $\left\{\sum_{i \in \mathbb{Z}} r_{i} X^{i}: r_{i} \in R\right.$ zero for all but finitely many $\left.i \in \mathbb{Z}\right\}$. Addition is pointwise and multiplication defined by

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}, \quad r, s \in R, m, n \in \mathbb{Z} .
$$

SKEW LAURENT POLYNOMIAL RINGS

Definition (Skew Laurent polynomial ring)

Let S be an associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a skew Laurent polynomial ring of R if these axioms hold:
(S1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(S2) $x R=R x$.
(S3) S is associative.

Let R be an associative ring with an automorphism σ. The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is $\left\{\sum_{i \in \mathbb{Z}} r_{i} X^{i}: r_{i} \in R\right.$ zero for all but finitely many $\left.i \in \mathbb{Z}\right\}$. Addition is pointwise and multiplication defined by

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}, \quad r, s \in R, m, n \in \mathbb{Z} .
$$

The generalized polynomial ring $R[X ; \sigma] \subset R\left[X^{ \pm} ; \sigma\right]$ subset of sums with $i \in \mathbb{N}$.

SKEW LAURENT POLYNOMIAL RINGS

Definition (Skew Laurent polynomial ring)

Let S be an associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a skew Laurent polynomial ring of R if these axioms hold:
(S1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(S2) $x R=R x$.
(S3) S is associative.

Let R be an associative ring with an automorphism σ. The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is $\left\{\sum_{i \in \mathbb{Z}} r_{i} X^{i}: r_{i} \in R\right.$ zero for all but finitely many $\left.i \in \mathbb{Z}\right\}$. Addition is pointwise and multiplication defined by

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}, \quad r, s \in R, m, n \in \mathbb{Z}
$$

The generalized polynomial ring $R[X ; \sigma] \subset R\left[X^{ \pm} ; \sigma\right]$ subset of sums with $i \in \mathbb{N}$.

Proposition

$$
R\left[X^{ \pm} ; \sigma\right] \text { is a skew Laurent polynomial ring of } R \text { with } x=X
$$

SKEW LAURENT POLYNOMIAL RINGS

Definition (Skew Laurent polynomial ring)

Let S be an associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a skew Laurent polynomial ring of R if these axioms hold:
(S1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(S2) $x R=R x$.
(S3) S is associative.

Let R be an associative ring with an automorphism σ. The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is $\left\{\sum_{i \in \mathbb{Z}} r_{i} X^{i}: r_{i} \in R\right.$ zero for all but finitely many $\left.i \in \mathbb{Z}\right\}$. Addition is pointwise and multiplication defined by

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}, \quad r, s \in R, m, n \in \mathbb{Z}
$$

The generalized polynomial ring $R[X ; \sigma] \subset R\left[X^{ \pm} ; \sigma\right]$ subset of sums with $i \in \mathbb{N}$.

Proposition

$R\left[X^{ \pm} ; \sigma\right]$ is a skew Laurent polynomial ring of R with $x=X$.

Proposition

Every skew Laurent polynomial ring of R is isomorphic to a generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$.

SKEW LAURENT POLYNOMIAL RINGS

SKEW LAURENT POLYNOMIAL RINGS

What are examples of skew Laurent polynomial rings?

SKEW LAURENT POLYNOMIAL RINGS

What are examples of skew Laurent polynomial rings?

```
Example
Let R be an associative ring. Then R[X\pm}]=R[\mp@subsup{X}{}{\pm};\mp@subsup{\textrm{id}}{R}{}](\mathrm{ and }R[X]=R[X;\mp@subsup{id}{R}{\prime}])
```


SKEW LAURENT POLYNOMIAL RINGS

What are examples of skew Laurent polynomial rings?

```
Example
Let R be an associative ring. Then R[X\pm}]=R[\mp@subsup{X}{}{\pm};\mp@subsup{\textrm{id}}{R}{}](\mathrm{ and }R[X]=R[X;\mp@subsup{id}{R}{\prime}])
```


Example

Let $*: \mathbb{C} \rightarrow \mathbb{C}, u \mapsto u^{*}$ be complex conjugation. In $\mathbb{C}\left[X^{ \pm} ; *\right]$ (and $\mathbb{C}[X ; *]$), $X u=u^{*} X$.

SKEW LAURENT POLYNOMIAL RINGS

What are examples of skew Laurent polynomial rings?

Example

Let R be an associative ring. Then $R\left[X^{ \pm}\right]=R\left[X^{ \pm} ; \mathrm{id}_{R}\right]$ (and $R[X]=R\left[X ; \mathrm{id}_{R}\right]$).

Example

Let $*: \mathbb{C} \rightarrow \mathbb{C}, u \mapsto u^{*}$ be complex conjugation. In $\mathbb{C}\left[X^{ \pm} ; *\right]$ (and $\mathbb{C}[X ; *]$), $X u=u^{*} X$.

Example

Let K be a field. The quantum torus $T_{q}(K)$ is $K\left\langle X^{ \pm}, Y^{ \pm}\right\rangle /(X Y-q Y X)$ for some $q \in K^{\times}$.

SKEW LAURENT POLYNOMIAL RINGS

What are examples of skew Laurent polynomial rings?

Example

Let R be an associative ring. Then $R\left[X^{ \pm}\right]=R\left[X^{ \pm} ; \mathrm{id}_{R}\right]$ (and $R[X]=R\left[X ; \mathrm{id}_{R}\right]$).

Example

Let $*: \mathbb{C} \rightarrow \mathbb{C}, u \mapsto u^{*}$ be complex conjugation. In $\mathbb{C}\left[X^{ \pm} ; *\right]$ (and $\mathbb{C}[X ; *]$), $X u=u^{*} X$.

Example

Let K be a field. The quantum torus $T_{q}(K)$ is $K\left\langle X^{ \pm}, Y^{ \pm}\right\rangle /(X Y-q Y X)$ for some $q \in K^{\times}$. $T_{q}(K)$ is (isomorphic to) $K\left[Y^{ \pm}\right]\left[X^{ \pm} ; \sigma\right]$ where σ is the K-automorphism $\sigma(Y)=q Y$.

Non-associative skew Laurent polynomial rings

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Convention. A non-associative ring is a ring which is not necessarily associative.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Convention. A non-associative ring is a ring which is not necessarily associative.
Definition (Associator and nuclei)
$(\cdot, \cdot, \cdot): R \times R \times R \rightarrow R$ is defined by $(r, s, t):=(r s) t-r(s t)$ for $r, s, t \in R$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Convention. A non-associative ring is a ring which is not necessarily associative.
Definition (Associator and nuclei)
$(\cdot, \cdot, \cdot): R \times R \times R \rightarrow R$ is defined by $(r, s, t):=(r s) t-r(s t)$ for $r, s, t \in R$.
(A, B, C) finite sums (a, b, c) with $a \in A, b \in B, c \in C$ for $A, B, C \subseteq R$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Convention. A non-associative ring is a ring which is not necessarily associative.

$$
\begin{aligned}
& \text { Definition (Associator and nuclei) } \\
& (\cdot, \cdot, \cdot): R \times R \times R \rightarrow R \text { is defined by }(r, s, t):=(r s) t-r(s t) \text { for } r, s, t \in R \text {. } \\
& (A, B, C) \text { finite sums }(a, b, c) \text { with } a \in A, b \in B, c \in C \text { for } A, B, C \subseteq R \text {. } \\
& N_{l}(R):=\{r \in R:(r, s, t)=0 \text { for all } s, t \in R\} . N_{m}(R) \text { and } N_{r}(R) \text { defined similarly. }
\end{aligned}
$$

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Convention. A non-associative ring is a ring which is not necessarily associative.

$$
\begin{aligned}
& \text { Definition (Associator and nuclei) } \\
& (\cdot, \cdot, \cdot): R \times R \times R \rightarrow R \text { is defined by }(r, s, t):=(r s) t-r(s t) \text { for } r, s, t \in R \text {. } \\
& (A, B, C) \text { finite sums }(a, b, c) \text { with } a \in A, b \in B, c \in C \text { for } A, B, C \subseteq R \text {. } \\
& N_{l}(R):=\{r \in R:(r, s, t)=0 \text { for all } s, t \in R\} . N_{m}(R) \text { and } N_{r}(R) \text { defined similarly. }
\end{aligned}
$$

Definition (Left R-module)
If R is a non-associative ring, a left R-module is an additive group M with a biadditive map $R \times M \rightarrow M,(r, m) \mapsto r m$ for any $r \in R$ and $m \in M$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Definition (Non-associative skew Laurent polynomial ring)
Let S be a non-associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a non-associative skew Laurent polynomial ring of R if these axioms hold:

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Definition (Non-associative skew Laurent polynomial ring)
Let S be a non-associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a non-associative skew Laurent polynomial ring of R if these axioms hold:
(N1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(N2) $x R=R x$.
(N3) $(S, S, x)=(S, x, S)=\{0\}$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Definition (Non-associative skew Laurent polynomial ring)
Let S be a non-associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a non-associative skew Laurent polynomial ring of R if these axioms hold:
(N1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(N2) $x R=R x$.
(N3) $(S, S, x)=(S, x, S)=\{0\}$.

Let R be a non-associative ring with an additive bijection σ that respects 1 .

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Definition (Non-associative skew Laurent polynomial ring)

Let S be a non-associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a non-associative skew Laurent polynomial ring of R if these axioms hold:
(N1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(N2) $x R=R x$.
(N3) $(S, S, x)=(S, x, S)=\{0\}$.
Let R be a non-associative ring with an additive bijection σ that respects 1 .
The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is defined as in the associative case,

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}, \quad r, s \in R, m, n \in \mathbb{Z}
$$

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Definition (Non-associative skew Laurent polynomial ring)

Let S be a non-associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a non-associative skew Laurent polynomial ring of R if these axioms hold:
(N1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(N2) $x R=R x$.
(N3) $(S, S, x)=(S, x, S)=\{0\}$.
Let R be a non-associative ring with an additive bijection σ that respects 1 .
The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is defined as in the associative case,

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}, \quad r, s \in R, m, n \in \mathbb{Z} .
$$

The generalized polynomial ring $R[X ; \sigma] \subset R\left[X^{ \pm} ; \sigma\right]$ subset of sums with $i \in \mathbb{N}$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Definition (Non-associative skew Laurent polynomial ring)

Let S be a non-associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a non-associative skew Laurent polynomial ring of R if these axioms hold:
(N1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(N2) $x R=R x$.
(N3) $(S, S, x)=(S, x, S)=\{0\}$.
Let R be a non-associative ring with an additive bijection σ that respects 1 .
The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is defined as in the associative case,

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}, \quad r, s \in R, m, n \in \mathbb{Z} .
$$

The generalized polynomial ring $R[X ; \sigma] \subset R\left[X^{ \pm} ; \sigma\right]$ subset of sums with $i \in \mathbb{N}$.

Proposition ([BR23])

$R\left[X^{ \pm} ; \sigma\right]$ is a non-associative skew Laurent polynomial ring of R with $x=X$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Definition (Non-associative skew Laurent polynomial ring)

Let S be a non-associative ring, $R \subseteq S$ with $1 \in R, x \in S$ invertible. S is a non-associative skew Laurent polynomial ring of R if these axioms hold:
(N1) S is a free left R-module with basis $\left\{1, x, x^{-1}, x^{2}, x^{-2}, \ldots\right\}$.
(N2) $x R=R x$.
(N3) $(\mathrm{S}, \mathrm{S}, \mathrm{x})=(\mathrm{S}, \mathrm{x}, \mathrm{S})=\{0\}$.

Let R be a non-associative ring with an additive bijection σ that respects 1 .
The generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$ is defined as in the associative case,

$$
\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}, \quad r, s \in R, m, n \in \mathbb{Z}
$$

The generalized polynomial ring $R[X ; \sigma] \subset R\left[X^{ \pm} ; \sigma\right]$ subset of sums with $i \in \mathbb{N}$.

Proposition ([BR23])

$R\left[X^{ \pm} ; \sigma\right]$ is a non-associative skew Laurent polynomial ring of R with $x=X$.

Proposition ([BR23])

Every non-associative skew Laurent polynomial ring of R is isomorphic to a generalized Laurent polynomial ring $R\left[X^{ \pm} ; \sigma\right]$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 .
If $S:=R\left[X^{ \pm} ; \sigma\right]$, then the following hold:

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $S:=R\left[X^{ \pm} ; \sigma\right]$, then the following hold:
(i) $R \subseteq N_{l}(S) \Longleftrightarrow R$ is associative.
(ii) $X \in N_{l}(S) \Longleftrightarrow \sigma$ is an automorphism.
(iii) S is associative $\Longleftrightarrow R$ is associative and σ is an automorphism.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $S:=R\left[X^{ \pm} ; \sigma\right]$, then the following hold:
(i) $R \subseteq N_{l}(S) \Longleftrightarrow R$ is associative.
(ii) $X \in N_{l}(S) \Longleftrightarrow \sigma$ is an automorphism.
(iii) S is associative $\Longleftrightarrow R$ is associative and σ is an automorphism.

Example ([BR23])

$R\left[X^{ \pm}\right]=R\left[X^{ \pm} ; \mathrm{id}_{R}\right]$ is associative $\Longleftrightarrow R$ is associative.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $S:=R\left[X^{ \pm} ; \sigma\right]$, then the following hold:
(i) $R \subseteq N_{l}(S) \Longleftrightarrow R$ is associative.
(ii) $X \in N_{l}(S) \Longleftrightarrow \sigma$ is an automorphism.
(iii) S is associative $\Longleftrightarrow R$ is associative and σ is an automorphism.

Example ([BR23])

$R\left[X^{ \pm}\right]=R\left[X^{ \pm} ; \mathrm{id}_{R}\right]$ is associative $\Longleftrightarrow R$ is associative.

Example ([BR23])

On \mathbb{C}, define $\sigma(a+b i)=a+q b i$ for any $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $S:=R\left[X^{ \pm} ; \sigma\right]$, then the following hold:
(i) $R \subseteq N_{l}(S) \Longleftrightarrow R$ is associative.
(ii) $X \in N_{l}(S) \Longleftrightarrow \sigma$ is an automorphism.
(iii) S is associative $\Longleftrightarrow R$ is associative and σ is an automorphism.

Example ([BR23])

$R\left[X^{ \pm}\right]=R\left[X^{ \pm} ; \mathrm{id}_{R}\right]$ is associative $\Longleftrightarrow R$ is associative.

Example ([BR23])

On \mathbb{C}, define $\sigma(a+b i)=a+q b i$ for any $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$.
Then σ is an automorphism $\Longleftrightarrow q= \pm 1 \Longleftrightarrow \mathbb{C}\left[X^{ \pm} ; \sigma\right]$ is associative.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $S:=R\left[X^{ \pm} ; \sigma\right]$, then the following hold:
(i) $R \subseteq N_{l}(S) \Longleftrightarrow R$ is associative.
(ii) $X \in N_{l}(S) \Longleftrightarrow \sigma$ is an automorphism.
(iii) S is associative $\Longleftrightarrow R$ is associative and σ is an automorphism.

Example ([BR23])

$R\left[X^{ \pm}\right]=R\left[X^{ \pm} ; \mathrm{id}_{R}\right]$ is associative $\Longleftrightarrow R$ is associative.

Example ([BR23])

On \mathbb{C}, define $\sigma(a+b i)=a+q b i$ for any $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$.
Then σ is an automorphism $\Longleftrightarrow q= \pm 1 \Longleftrightarrow \mathbb{C}\left[X^{ \pm} ; \sigma\right]$ is associative.

Example ([BR23])

The quantum torus $T_{q}(\mathbb{O})$ for any $q \in \mathbb{R}^{\times}$is $\mathbb{O} \otimes_{\mathbb{R}} T_{q}(\mathbb{R})$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $S:=R\left[X^{ \pm} ; \sigma\right]$, then the following hold:
(i) $R \subseteq N_{l}(S) \Longleftrightarrow R$ is associative.
(ii) $X \in N_{l}(S) \Longleftrightarrow \sigma$ is an automorphism.
(iii) S is associative $\Longleftrightarrow R$ is associative and σ is an automorphism.

Example ([BR23])

$R\left[X^{ \pm}\right]=R\left[X^{ \pm} ; \mathrm{id}_{R}\right]$ is associative $\Longleftrightarrow R$ is associative.

Example ([BR23])

On \mathbb{C}, define $\sigma(a+b i)=a+q b i$ for any $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$.
Then σ is an automorphism $\Longleftrightarrow q= \pm 1 \Longleftrightarrow \mathbb{C}\left[X^{ \pm} ; \sigma\right]$ is associative.

Example ([BR23])

The quantum torus $T_{q}(\mathbb{O})$ for any $q \in \mathbb{R}^{\times}$is $\mathbb{O} \otimes_{\mathbb{R}} T_{q}(\mathbb{R})$. Then $T_{q}(\mathbb{O})$ is (isomorphic to) $\mathbb{O}\left[Y^{ \pm}\right]\left[X^{ \pm} ; \sigma\right]$ where σ is the \mathbb{O}-automorphism $\sigma(Y)=q Y$. $T_{q}(\mathbb{O})$ is not associative.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

An anti-automorphism σ on R is an additive bijection s.t. $\sigma(r s)=\sigma(s) \sigma(r)$ for $r, s \in R$, naturally respecting 1.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

An anti-automorphism σ on R is an additive bijection s.t. $\sigma(r s)=\sigma(s) \sigma(r)$ for $r, s \in R$, naturally respecting 1.

Lemma ([BR23])

If R is a non-associative ring with an anti-automorphism σ, then $R\left[X^{ \pm} ; \sigma\right]$ is associative $\Longleftrightarrow R$ is associative and commutative.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

An anti-automorphism σ on R is an additive bijection s.t. $\sigma(r s)=\sigma(s) \sigma(r)$ for $r, s \in R$, naturally respecting 1.

Lemma ([BR23])

If R is a non-associative ring with an anti-automorphism σ, then $R\left[X^{ \pm} ; \sigma\right]$ is associative $\Longleftrightarrow R$ is associative and commutative.

An involution is an anti-automorphism $*: R \rightarrow R, r \mapsto r^{*}$ s.t. $\left(r^{*}\right)^{*}=r$ for any $r \in R$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

An anti-automorphism σ on R is an additive bijection s.t. $\sigma(r s)=\sigma(s) \sigma(r)$ for $r, s \in R$, naturally respecting 1.

Lemma ([BR23])

If R is a non-associative ring with an anti-automorphism σ, then $R\left[X^{ \pm} ; \sigma\right]$ is associative $\Longleftrightarrow R$ is associative and commutative.

An involution is an anti-automorphism $*: R \rightarrow R, r \mapsto r^{*}$ s.t. $\left(r^{*}\right)^{*}=r$ for any $r \in R$. R with an involution $*$ is a $*$-ring. Any $*$-ring R gives $R\left[X^{ \pm} ; *\right]$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

An anti-automorphism σ on R is an additive bijection s.t. $\sigma(r s)=\sigma(s) \sigma(r)$ for $r, s \in R$, naturally respecting 1.

Lemma ([BR23])

If R is a non-associative ring with an anti-automorphism σ, then $R\left[X^{ \pm} ; \sigma\right]$ is associative $\Longleftrightarrow R$ is associative and commutative.

An involution is an anti-automorphism $*: R \rightarrow R, r \mapsto r^{*}$ s.t. $\left(r^{*}\right)^{*}=r$ for any $r \in R$. R with an involution $*$ is a $*$-ring. Any $*-$ ring R gives $R\left[X^{ \pm} ; *\right]$.

Example ([BR23])

$M_{n}(\mathbb{C})$ with $*$ conjugate transpose is a $*-$ ring. $M_{n}(\mathbb{C})\left[X^{ \pm} ; *\right]$ is associative $\Longleftrightarrow n=1$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

An anti-automorphism σ on R is an additive bijection s.t. $\sigma(r s)=\sigma(s) \sigma(r)$ for $r, s \in R$, naturally respecting 1.

Lemma ([BR23])

If R is a non-associative ring with an anti-automorphism σ, then $R\left[X^{ \pm} ; \sigma\right]$ is associative $\Longleftrightarrow R$ is associative and commutative.

An involution is an anti-automorphism $*: R \rightarrow R, r \mapsto r^{*}$ s.t. $\left(r^{*}\right)^{*}=r$ for any $r \in R$. R with an involution $*$ is a $*$-ring. Any $*-$ ring R gives $R\left[X^{ \pm} ; *\right]$.

Example ([BR23])

$M_{n}(\mathbb{C})$ with $*$ conjugate transpose is a $*-$ ring. $M_{n}(\mathbb{C})\left[X^{ \pm} ; *\right]$ is associative $\Longleftrightarrow n=1$.

Example ([BR23])

Let A be any of the real $*$-algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}, \ldots$ with $*$ conjugation.
Then A is commutative $\Longleftrightarrow A=\mathbb{R}$ or \mathbb{C}, so $A\left[X^{ \pm} ; *\right]$ is associative $\Longleftrightarrow A=\mathbb{R}$ or \mathbb{C}.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])

Let D be a commutative, non-associative division ring with an additive bijection σ that respects 1. If σ has infinite order, then $D\left[X^{ \pm} ; \sigma\right]$ is simple.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])

Let D be a commutative, non-associative division ring with an additive bijection σ that respects 1. If σ has infinite order, then $D\left[X^{ \pm} ; \sigma\right]$ is simple.
$\mathbb{C}\left[X^{ \pm} ; \sigma\right]$ with $\sigma(a+b i)=a+q b i$ for $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$is simple if $q \neq \pm 1$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])

Let D be a commutative, non-associative division ring with an additive bijection σ that respects 1. If σ has infinite order, then $D\left[X^{ \pm} ; \sigma\right]$ is simple.
$\mathbb{C}\left[X^{ \pm} ; \sigma\right]$ with $\sigma(a+b i)=a+q b i$ for $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$is simple if $q \neq \pm 1$.

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $\sigma^{m}=\operatorname{id}_{R}$ for an $m \in \mathbb{Z} \backslash\{0\}$, then $R\left[X^{ \pm} ; \sigma\right]\left(1+X^{m^{2}}\right)$ is a non-trivial ideal of $R\left[X^{ \pm} ; \sigma\right]$.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])

Let D be a commutative, non-associative division ring with an additive bijection σ that respects 1. If σ has infinite order, then $D\left[X^{ \pm} ; \sigma\right]$ is simple.
$\mathbb{C}\left[X^{ \pm} ; \sigma\right]$ with $\sigma(a+b i)=a+q b i$ for $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$is simple if $q \neq \pm 1$.

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $\sigma^{m}=\operatorname{id}_{R}$ for an $m \in \mathbb{Z} \backslash\{0\}$, then $R\left[X^{ \pm} ; \sigma\right]\left(1+X^{m^{2}}\right)$ is a non-trivial ideal of $R\left[X^{ \pm} ; \sigma\right]$.
$S:=\mathbb{C}\left[X^{ \pm} ; \sigma\right]$ above is not simple if $q= \pm 1$ since $S\left(1+X^{4}\right)$ is a non-trivial ideal of S.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])

Let D be a commutative, non-associative division ring with an additive bijection σ that respects 1. If σ has infinite order, then $D\left[X^{ \pm} ; \sigma\right]$ is simple.
$\mathbb{C}\left[X^{ \pm} ; \sigma\right]$ with $\sigma(a+b i)=a+q b i$ for $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$is simple if $q \neq \pm 1$.

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $\sigma^{m}=\operatorname{id}_{R}$ for an $m \in \mathbb{Z} \backslash\{0\}$, then $R\left[X^{ \pm} ; \sigma\right]\left(1+X^{m^{2}}\right)$ is a non-trivial ideal of $R\left[X^{ \pm} ; \sigma\right]$.
$S:=\mathbb{C}\left[X^{ \pm} ; \sigma\right]$ above is not simple if $q= \pm 1$ since $S\left(1+x^{4}\right)$ is a non-trivial ideal of S. S is simple $\Longleftrightarrow S$ is not associative.

NON-ASSOCIATIVE SKEW LAURENT POLYNOMIAL RINGS

A map has infinite order if no non-zero power of it is the identity map.

Proposition ([BR23])

Let D be a commutative, non-associative division ring with an additive bijection σ that respects 1. If σ has infinite order, then $D\left[X^{ \pm} ; \sigma\right]$ is simple.
$\mathbb{C}\left[X^{ \pm} ; \sigma\right]$ with $\sigma(a+b i)=a+q b i$ for $a, b \in \mathbb{R}$ and $q \in \mathbb{R}^{\times}$is simple if $q \neq \pm 1$.

Proposition ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If $\sigma^{m}=\operatorname{id}_{R}$ for an $m \in \mathbb{Z} \backslash\{0\}$, then $R\left[X^{ \pm} ; \sigma\right]\left(1+X^{m^{2}}\right)$ is a non-trivial ideal of $R\left[X^{ \pm} ; \sigma\right]$.
$S:=\mathbb{C}\left[X^{ \pm} ; \sigma\right]$ above is not simple if $q= \pm 1$ since $S\left(1+X^{4}\right)$ is a non-trivial ideal of S. S is simple $\Longleftrightarrow S$ is not associative.
If R is a $*$-ring, then $R\left[X^{ \pm} ; *\right]\left(1+X^{4}\right)$ is a non-trivial ideal of $R\left[X^{ \pm} ; *\right]$.

Hilbert's basis theorem

HILBERT'S BASIS THEOREM

A family \mathcal{F} of subsets satisfies the ascending chain condition if there is no infinite chain $S_{1} \subset S_{2} \subset \ldots$ and $S_{1}, S_{2}, \ldots \in \mathcal{F} . S \in \mathcal{F}$ is maximal if no $T \in \mathcal{F}$ with $S \subset T$. Proposition

HILBERT'S BASIS THEOREM

A family \mathcal{F} of subsets satisfies the ascending chain condition if there is no infinite chain $S_{1} \subset S_{2} \subset \ldots$ and $S_{1}, S_{2}, \ldots \in \mathcal{F} . S \in \mathcal{F}$ is maximal if no $T \in \mathcal{F}$ with $S \subset T$.

Proposition

Let R be a non-associative ring. Then the following are equivalent:
\square (NR2) Any non-empty family of right (left) ideals of R

HILBERT'S BASIS THEOREM

A family \mathcal{F} of subsets satisfies the ascending chain condition if there is no infinite chain $S_{1} \subset S_{2} \subset \ldots$ and $S_{1}, S_{2}, \ldots \in \mathcal{F} . S \in \mathcal{F}$ is maximal if no $T \in \mathcal{F}$ with $S \subset T$.

Proposition

Let R be a non-associative ring. Then the following are equivalent:
(NR1) R satisfies the ascending chain condition on its right (left) ideals.
(NR2) Any non-empty family of right (left) ideals of R has a maximal element.
(NR3) Any right (left) ideal of R is finitely generated.

HILBERT'S BASIS THEOREM

A family \mathcal{F} of subsets satisfies the ascending chain condition if there is no infinite chain $S_{1} \subset S_{2} \subset \ldots$ and $S_{1}, S_{2}, \ldots \in \mathcal{F} . S \in \mathcal{F}$ is maximal if no $T \in \mathcal{F}$ with $S \subset T$.

Proposition

Let R be a non-associative ring. Then the following are equivalent:
(NR1) R satisfies the ascending chain condition on its right (left) ideals.
(NR2) Any non-empty family of right (left) ideals of R has a maximal element.
(NR3) Any right (left) ideal of R is finitely generated.
R is called right (left) Noetherian if it satisfies these conditions.

Theorem (Hilbert's basis theorem)

HILBERT'S BASIS THEOREM

A family \mathcal{F} of subsets satisfies the ascending chain condition if there is no infinite chain $S_{1} \subset S_{2} \subset \ldots$ and $S_{1}, S_{2}, \ldots \in \mathcal{F} . S \in \mathcal{F}$ is maximal if no $T \in \mathcal{F}$ with $S \subset T$.

Proposition

Let R be a non-associative ring. Then the following are equivalent:
(NR1) R satisfies the ascending chain condition on its right (left) ideals.
(NR2) Any non-empty family of right (left) ideals of R has a maximal element.
(NR3) Any right (left) ideal of R is finitely generated.
R is called right (left) Noetherian if it satisfies these conditions.
R is called Noetherian if both right and left Noetherian.

HILBERT'S BASIS THEOREM

A family \mathcal{F} of subsets satisfies the ascending chain condition if there is no infinite chain $S_{1} \subset S_{2} \subset \ldots$ and $S_{1}, S_{2}, \ldots \in \mathcal{F} . S \in \mathcal{F}$ is maximal if no $T \in \mathcal{F}$ with $S \subset T$.

Proposition

Let R be a non-associative ring. Then the following are equivalent:
(NR1) R satisfies the ascending chain condition on its right (left) ideals.
(NR2) Any non-empty family of right (left) ideals of R has a maximal element.
(NR3) Any right (left) ideal of R is finitely generated.
R is called right (left) Noetherian if it satisfies these conditions.
R is called Noetherian if both right and left Noetherian.

Theorem (Hilbert's basis theorem)

Let R be an associative, commutative ring. If R is Noetherian, then so is $R[X]$.

HILBERT'S BASIS THEOREM

A family \mathcal{F} of subsets satisfies the ascending chain condition if there is no infinite chain $S_{1} \subset S_{2} \subset \ldots$ and $S_{1}, S_{2}, \ldots \in \mathcal{F} . S \in \mathcal{F}$ is maximal if no $T \in \mathcal{F}$ with $S \subset T$.

Proposition

Let R be a non-associative ring. Then the following are equivalent:
(NR1) R satisfies the ascending chain condition on its right (left) ideals.
(NR2) Any non-empty family of right (left) ideals of R has a maximal element.
(NR3) Any right (left) ideal of R is finitely generated.
R is called right (left) Noetherian if it satisfies these conditions.
R is called Noetherian if both right and left Noetherian.

Theorem (Hilbert's basis theorem)

Let R be an associative, commutative ring. If R is Noetherian, then so is $R[X]$.
Hilbert's [Hil90] original theorem was a version of the above.

[^5]
HILBERT'S BASIS THEOREM

A family \mathcal{F} of subsets satisfies the ascending chain condition if there is no infinite chain $S_{1} \subset S_{2} \subset \ldots$ and $S_{1}, S_{2}, \ldots \in \mathcal{F} . S \in \mathcal{F}$ is maximal if no $T \in \mathcal{F}$ with $S \subset T$.

Proposition

Let R be a non-associative ring. Then the following are equivalent:
(NR1) R satisfies the ascending chain condition on its right (left) ideals.
(NR2) Any non-empty family of right (left) ideals of R has a maximal element.
(NR3) Any right (left) ideal of R is finitely generated.
R is called right (left) Noetherian if it satisfies these conditions.
R is called Noetherian if both right and left Noetherian.

Theorem (Hilbert's basis theorem)

Let R be an associative, commutative ring. If R is Noetherian, then so is $R[X]$.
Hilbert's [Hil90] original theorem was a version of the above.

Theorem (Hilbert's basis theorem for $R[X ; \sigma]$ and $R\left[X^{ \pm} ; \sigma\right]$)

Let R be an associative ring and σ an automorphism on R.
If R is right or left Noetherian, then so are $R[X ; \sigma]$ and $R\left[X^{ \pm} ; \sigma\right]$.
[Hil90] D. Hilbert. "Ueber die Theorie der algebraischen Formen". In: Math. Annalen 42 (1890).

HILBERT'S BASIS THEOREM

Theorem ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If R is right or left Noetherian, then so is $R\left[X^{ \pm} ; \sigma\right]$.

HILBERT'S BASIS THEOREM

Theorem ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If R is right or left Noetherian, then so is $R\left[X^{ \pm} ; \sigma\right]$.

Theorem ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 .
If R is right Noetherian, then so is $R[X ; \sigma]$.
Remark

Hilbert's basis theorem

Theorem ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 . If R is right or left Noetherian, then so is $R\left[X^{ \pm} ; \sigma\right]$.

Theorem ([BR23])

Let R be a non-associative ring with an additive bijection σ that respects 1 .
If R is right Noetherian, then so is $R[X ; \sigma]$.
Remark. There is a left Noetherian ring R and a σ where $R[X ; \sigma]$ is not left Noetherian!

HILBERT'S BASIS THEOREM

Let R be a non-associative ring with σ an additive bijection that respects 1 .

HILbERT'S BASIS THEOREM

Let R be a non-associative ring with σ an additive bijection that respects 1 . Can consider skew power series rings $R[[X ; \sigma]]$ as $\left\{\sum_{i=0}^{\infty} r_{i} X^{i}: r_{i} \in R\right\}$

Hilbert's basis theorem

Let R be a non-associative ring with σ an additive bijection that respects 1 . Can consider skew power series rings $R[[X ; \sigma]]$ as $\left\{\sum_{i=0}^{\infty} r_{i} X^{i}: r_{i} \in R\right\}$ and skew Laurent series rings $R((X ; \sigma))$ as $\left\{\sum_{i=k}^{\infty} r_{i} X^{i}: r_{i} \in R, k \in \mathbb{Z}\right\}$ with $\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}$.

HILBERT'S BASIS THEOREM

Let R be a non-associative ring with σ an additive bijection that respects 1 . Can consider skew power series rings $R[[X ; \sigma]]$ as $\left\{\sum_{i=0}^{\infty} r_{i} X^{i}: r_{i} \in R\right\}$ and skew Laurent series rings $R((X ; \sigma))$ as $\left\{\sum_{i=k}^{\infty} r_{i} X^{i}: r_{i} \in R, k \in \mathbb{Z}\right\}$ with $\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}$.

Theorem

Let R be an associative ring with an automorphism σ. If R is right or left Noetherian, then so are $R[[X ; \sigma]]$ and $R((X ; \sigma))$.

HILBERT'S BASIS THEOREM

Let R be a non-associative ring with σ an additive bijection that respects 1 . Can consider skew power series rings $R[[X ; \sigma]]$ as $\left\{\sum_{i=0}^{\infty} r_{i} X^{i}: r_{i} \in R\right\}$ and skew Laurent series rings $R((X ; \sigma))$ as $\left\{\sum_{i=k}^{\infty} r_{i} X^{i}: r_{i} \in R, k \in \mathbb{Z}\right\}$ with $\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}$.

Theorem

Let R be an associative ring with an automorphism σ. If R is right or left Noetherian, then so are $R[[X ; \sigma]]$ and $R((X ; \sigma))$.

Theorem ([BR23])

Let R be an associative ring with an additive bijection σ that respects 1 . If R is right Noetherian, then so are $R[[X ; \sigma]]$ and $R((X ; \sigma))$.

HILBERT'S BASIS THEOREM

Let R be a non-associative ring with σ an additive bijection that respects 1 . Can consider skew power series rings $R[[X ; \sigma]]$ as $\left\{\sum_{i=0}^{\infty} r_{i} X^{i}: r_{i} \in R\right\}$ and skew Laurent series rings $R((X ; \sigma))$ as $\left\{\sum_{i=k}^{\infty} r_{i} X^{i}: r_{i} \in R, k \in \mathbb{Z}\right\}$ with $\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}$.

Theorem

Let R be an associative ring with an automorphism σ. If R is right or left Noetherian, then so are $R[[X ; \sigma]]$ and $R((X ; \sigma))$.

Theorem ([BR23])

Let R be an associative ring with an additive bijection σ that respects 1 . If R is right Noetherian, then so are $R[[X ; \sigma]]$ and $R((X ; \sigma))$.

Q: Can one generalize the last theorem for R non-associative?

HILBERT'S BASIS THEOREM

Let R be a non-associative ring with σ an additive bijection that respects 1 . Can consider skew power series rings $R[[X ; \sigma]]$ as $\left\{\sum_{i=0}^{\infty} r_{i} X^{i}: r_{i} \in R\right\}$ and skew Laurent series rings $R((X ; \sigma))$ as $\left\{\sum_{i=k}^{\infty} r_{i} X^{i}: r_{i} \in R, k \in \mathbb{Z}\right\}$ with $\left(r X^{m}\right)\left(s X^{n}\right)=\left(r \sigma^{m}(s)\right) X^{m+n}$.

Theorem

Let R be an associative ring with an automorphism σ. If R is right or left Noetherian, then so are $R[[X ; \sigma]]$ and $R((X ; \sigma))$.

Theorem ([BR23])

Let R be an associative ring with an additive bijection σ that respects 1 . If R is right Noetherian, then so are $R[[X ; \sigma]]$ and $R((X ; \sigma))$.

Q: Can one generalize the last theorem for R non-associative?
Q: Can one prove a left version of the last theorem?

Thank you!

Thank you!

[^0]: [Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.

[^1]: [Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.
 [Ore33] 0. Ore. "Theory of Non-Commutative Polynomials". In: Ann. Math 34.3 (1933).

[^2]: [Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.
 [Ore33] 0. Ore. "Theory of Non-Commutative Polynomials". In: Ann. Math 34.3 (1933).
 [NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: Isr. J. Math. 224.1 (2018).

[^3]: [Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.
 [Ore33] O. Ore. "Theory of Non-Commutative Polynomials". In: Ann. Math 34.3 (1933).
 [NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: Isr. J. Math. 224.1 (2018).

[^4]: [Hil03] D. Hilbert. Grundlagen der Geometrie. Leipzig: Teubner, 1903.
 [Ore33] O. Ore. "Theory of Non-Commutative Polynomials". In: Ann. Math 34.3 (1933).
 [NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: Isr. J. Math. 224.1 (2018).

[^5]: [Hil90] D. Hilbert. "Ueber die Theorie der algebraischen Formen". In: Math. Annalen 42 (1890).

